Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 83(17): 10037-10050, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30028610

RESUMO

Nonideal kinetic chain analysis was used to examine the kinetic limitations of free-radical synthesis. Homolytic aromatic substitution (HAS: ArH + R• → ArR + H•) occurs in a chain-terminating side reaction to the tributyltin hydride ( SnH) reduction chain (RX + SnH + ( i•)cat. → RH + SnX). Kinetic modeling of premixed and slow reagent addition reactions have clarified the mechanisms of SM HAS, with the azo initiator ( iNN i) acting not only as radical source but also (as an H• acceptor) as the redox catalyst for aromatization, and/or as a postaddition oxidant. Refractory halides and other hitherto baffling anomalies may arise from the build up of ipso (rather than ortho)-cycloadduct radicals in the steady-state radical population. The implications of these findings for "tin-free" radical chains (and emerging photoredox methods) are considered via historical and recent examples of the effects of chain-degrading radical transfer (to substrate, product, solvent, initiator, and/or reagent ligands) on the reagent's chain.

2.
J Org Chem ; 83(16): 9178-9189, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29894181

RESUMO

Reversible addition of thiyl radicals to cis fatty acids converts them into trans fatty acids, L Z + S• ⇄ SL• ⇄ L E + S•, in a cycle that, uninterrupted, would rapidly isomerize lipids exposed to radicals and thiols. One reason this does not happen in foods and organisms is because the cycle is interrupted, by exothermic allylic abstraction, L + S• → L• + SH. Autoinhibition limits the cis-trans cycle length to around 400-500 (L E per S•) in a MUFA model (methyl oleate) and just ∼13-15 in a PUFA lipid model (methyl linoleate). The weak C-H bonds in bisallylic groups in PUFAs thereby act as the first line of defense against thiyl cis-trans cycles in biolipid solutions (±O2). With the intriguing exception of vitamin E in MUFA, thiyl-active antioxidants inhibit isomerization in much the same way as they protect against peroxidation. Applied to thiol-ene coupling (TEC), the allylic abstraction, degraded-chain paradigm resolved a raft of hitherto contradictory trends and findings in "click" TEC polymerization and organic synthesis methods.

3.
J Am Chem Soc ; 139(13): 4704-4714, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28253623

RESUMO

Cis lipids can be converted by thiols and free radicals into trans lipids, which are therefore a valuable tell-tale for free radical activity in the cell's lipidome. Our previous studies have shown that polyunsaturated lipids are isomerized by alkanethiyl radicals (S•) in a cycle propagated by reversible double-bond addition and terminated by radical H-abstraction from the lipid. A critical flaw in this picture has long been that the reported lipid abstraction rate from radiolysis studies is faster than addition-isomerization, implying that the "cycle" must be terminating faster than it is propagating! Herein, we resolved this longstanding puzzle by combining a detailed product analysis, with reinvestigation of the time-resolved kinetics, DFT calculations of the indicated pathways, and reformulation of the radical-stasis equations. We have determined thiol-coupled products in dilute solutions arise mainly from addition to the inside position of the bisallylic group, followed by rapid intramolecular H• transfer, yielding allylic radicals (LZZ + S• ⇄ SL• → SL'•) that are slowly reduced by thiol (SL'• + SH → SL'H + S•). The first-order grow-in rate of the L-H• signal (kexp280nm) may therefore be dominated by the addition-H-translocation rather than slower direct H•-abstraction. Steady-state kinetic analysis of the new mechanism is consistent with products and the rates and trends for polyunsaturated fatty acids (PUFAs), monounsaturated fatty acids (MUFAs), and mixtures, with and without physiological [O2]. Implications of this new paradigm for the thiol-ene reactivity fall in an interdisciplinary research area spanning from synthetic applications to metabolomics.


Assuntos
Ácidos Linoleicos/química , Compostos de Sulfidrila/química , Radicais Livres/química , Estrutura Molecular , Teoria Quântica
4.
J Org Chem ; 80(3): 1321-31, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25545111

RESUMO

Kinetic data for reduction of organic halides (RX) by tri-n-butylstannane (SnH) reveal a serious flaw in the current view of the kinetic radical chain: the tacit but unproven assumption that the speed of reaction is determined by the slowest propagation step. Our results show this is rarely true for reductive chains and that the observed rate is in fact controlled by unseen side-reactions of propagating R(•) and Sn(•) radicals with the solvent (notably, benzene!) or solvent impurities (e.g., trace benzophenone dryness indicator in THF) or, crucially, with allylic-CH and conjugated unsaturated groups in substrates and products. Most R(•) and/or Sn(•) radicals are therefore converted into relatively inert delocalized species A(•) and/or B(•) that inhibit the chain. Retardation in the degraded chain is given by a simple sum of terms, each being the ratio of the chain-transfer rate divided by the rate of chain-return. The model kinetic equation is linear and easy to ratify, interpret, and apply: to calculate retarding rate constants, optimize reaction conditions, and identify additives or "remedies" that repair the chain and accelerate reaction. The present work is thus expected to have a helpful impact on the practice and design of SnH radical chain based (and related) syntheses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...